Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2019-20

Program: Information Science and Engineering	
Semester :	3
Course Code:	17CSL38
Course Title:	DATA STRUCTURES LABORATORY
Credit / L-T-P:	2 / 0-1-2
Total Contact Hours:	40
Course Plan Author:	Y. Vamsi Krishna

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-560090 , KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477, Web: www.skit.org.in

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	4
3. Laboratory Material	6
4. Laboratory Prerequisites:	6
5. Content for Placement, Profession, HE and GATE	7
B. Laboratory Instructions	7
1. General Instructions	7
2. Laboratory Specific Instructions	7
C. OBE PARAMETERS	8
1. Laboratory Outcomes	8
2. Laboratory Applications	8
3. Mapping And Justification	8
4. Articulation Matrix	9
5. Curricular Gap and Experiments	9
6. Experiments Beyond Syllabus	10
D. COURSE ASSESSMENT	10
1. Laboratory Coverage	10
2. Continuous Internal Assessment (CIA)	10
E. EXPERIMENTS	11
Experiment 01 : Arrays	11
Experiment 02 : String	12
Experiment 03 : Stack	12
Experiment 04 : Conversion Of Expression	13
Experiment 05 a: Evaluation of expressions	14
Experiment 05 b: Tower of Hanoi	15
Experiment 06: Circular queues	16
Experiment 07: Singly Linked List	17
Experiment 08: Doubly Linked List	18
Experiment 09: Circular Linked List	18
Experiment 10: Binary Search Tree	19
Experiment 11: Breadth First Search	21

Experiment 12: Hashing Functions	23
F. Content to Experiment Outcomes	25
1. TLPA Parameters	25
2. Concepts and Outcomes:	26

Note : Remove "Table of Content" before including in CP Book

Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	BE	Program:	IS
Year / Semester :	2/111	Academic Year:	2019-20
Course Title:	DATA STRUCTURES LABORATORY	Course Code:	17CSL38
Credit / L-T-P:	2 / 0-1-2	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	
Lab. Plan Author:	Vamsi Krishna Y	Sign	Dt : 03/08/19
Checked By:	Manjula K	Sign	Dt :

2. Laboratory Content

Expt.	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Design, Develop and Implement a menu driven Programin C for the		Data	L4
	following Array operations		Manipulatio	Analyze
	a.Creating an Array of NInteger Elements		n	
	b.Display of Array Elements with Suitable Headings			
	c.Inserting an Element (ELEM) at a given valid Position (POS)			
	d.Deleting an Element at a given valid Position(POS)			
	e.Exit.			
	Support the program with functions for each of the above operations			

2	Design, Develop and Implement a Program in C for the following	Data	L4
	operations on Strings	Manipulatio	
	a.Read a main String (STR), a Pattern String (PAT) and a Replace	n	
	String (REP)		
	b.Perform Pattern Matching Operation: Find and Replace all		
	occurrences of PAT in STR with REP if PAT exists in STR. Report		
	suitable messages in case PAT does not exist in STR		
	Support the program with functions for each of the above operations.		
	Don't use Built-in functions.		
3	Design, Develop and Implement a menu driven Programin C for the	Stack	L4
	following operations on STACK of Integers (Array Implementation of	Operations	
	Stack with maximum size MAX)		
	a Push an Element on to Stack		
	h Pop an Element from Stack		
	c Demonstrate how Stack can be used to check Palindrome		
	d Demonstrate Overflow and Underflow situations on Stack		
	a Display the status of Stack		
	f Evit		
	LEXIL		
	support the program with appropriate functions for each of the above		
4	Design, Develop and Implement a Program in C for converting an	Stack	L4
	Infix Expression to Postfix Expression. Program should support for	Operations	
	both parenthesized and free parenthesized expressions with the		
	operators: +, -, *, /, %(Remainder), ^(Power) and		
	alphanumericoperands.		
5	Design, Develop and Implement a Program in C for the following	Stack	L4
	Stack Applications	Operations	
	a.Evaluation of Suffix expressionwith single digit operands		
	andoperators: +, -, *, /, %, ^		
	b.Solving Tower of Hanoi problem with n disks		
6	Design, Develop and Implement a menu driven Program in C for the	Queue	L4
	following operations on Circular QUEUE of Characters	Features	
	(ArrayImplementation of Queue with maximum size MAX)		
	a.Insert an Element on to Circular QUEUE		
	b.Delete an Element from Circular QUEUE		
	c.Demonstrate Overflow and Underflow situations on Circular		
	QUEUE		
	d.Display the status of Circular QUEUE		
	e.Exit		
	Support the program with appropriate functions for each of the above		
	operations		
7	Design, Develop and Implement a menu driven Program in C for the	Linked List	L4
	following operations on Singly Linked List (SLL) of Student Data with	Characteristi	
	the fields: USN, Name, Branch. Sem. PhNo	CS	
	a.Create a SLL of NStudents Data by using front insertion.		
	b.Display the status of SLI and count the number of nodes in it		
	c Perform Insertion / Deletion at End of SI I		
	d Perform Insertion / Deletion at Front of SLL (Demonstration of		
	stack)		
	e Fxit		
Q	Design Develop and Implement a monu driven Program in C for the	Linkod List	1 /
0	following operations on Doubly Linked List (DLL) of Employee Date	Characteristi	L4
1	ponowing operations on Doubly Linked List (DLL) of Employee Data	Characterist	

	with the fields: SSN, Name, Dept, Designation, Sal, PhNo a.Create a DLL of NEmployees Data by using end insertion. b.Display the status of DLL and count the number of nodes in it c.Perform Insertion and Deletion at End of DLL d.Perform Insertion and Deletion at Front of DLL e.Demonstrate how this DLLcan be used as Double Ended Queue f.Exit	CS	
9	Design, Develop and Implement a Program in C for the following operationson Singly Circular Linked List (SCLL) with header nodes a.Represent and Evaluate a Polynomial $P(x,y,z) = 6x2y2z-4yz+3x3yz+2xy5z-2xyz3$ b.Find the sum of two polynomials POLY1(x,y,z) and POLY2(x,y,z) and store the result in POLYSUM(x,y,z) Support the program with appropriate functions for each of the above operations.	Linked List Characteristi cs	L4
10	Design, Develop and Implement a menu driven Programin C for the following operations on Binary Search Tree (BST) of Integers a. Create a BST of N Integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2 b. Traverse the BST in Inorder, Preorder and Post Order c. Search the BST for a given element (KEY) and report the appropriate message e. Exit	Traversal Method	L4
11	Design, Develop and Implement a Program in C for the following operations onGraph(G) of Cities a.Create a Graph of N cities using Adjacency Matrix. b.Print all the nodes reachable from a given starting node in a digraph using DFS/BFS method	Traversal Method	L4
12	Given a File of N employee records with a set K of Keys(4- digit) which uniquely determine the records in file F. Assume that file Fis maintained in memory by a Hash Table(HT) of m memory locations with Las the set of memory addresses (2- digit) of locations in HT. Let the keys in K and addresses in L are Integers. Design and develop a Program in C that uses Hash function H: $K \rightarrow \rightarrow \rightarrow L$ as $H(K)=Kmod$ m (remainder method), and implement hashing technique to map a given key K to the address space L.Resolve the collision (if any) using linear probing.	File Organizatio n	L4

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1	Fundamentals of Data Structures in C - Ellis Horowitz and Sartaj Sahni, 2nd edition, Universities Press,2014	In Lib	
2	Data Structures - Seymour Lipschutz, Schaum's Outlines, Revised 1st edition, McGraw Hill, 2014		
В	Reference books		
1	Data Structures: A Pseudo-code approach with C –Gilberg & Forouzan, 2nd edition, Cengage Learning,2014	In dept	
2	Data Structures using C, , Reema Thareja, 3rd edition Oxford press, 2012		

3	An Introduction to Data Structures with Applications- Jean-Paul Tremblay &		
	Paul G. Sorenson, 2nd Edition, McGraw Hill, 2013		
4	Data Structures using C - A M Tenenbaum, PHI, 1989		
5	Data Structures and Program Design in C - Robert Kruse, 2nd edition, PHI, 1996		
C	Concept Videos or Simulation for Understanding		
C1	 <u>https://www.geeksforgeeks.org/abstract-data-types/</u> 		
C2	 <u>https://www.geeksforgeeks.org/data-structures/linked-list/</u> 		
C3	 <u>https://www.geeksforgeeks.org/binary-tree-data-structure/</u> 		
C4			
C5			
D	Software Tools for Design	-	-
1	https://turbo-c.apponic.com/		
E	Recent Developments for Research	-	-
1			
2			
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://nptel.ac.in/courses/106102064/ (NPTEL course related to Data		
	Structures course)		

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	17pcd13/	C Programing	1. Knowledge on Data Structures	2		L2
	23					
2	-	-	4. Knowledge of Architecture	-	Plan Gap Course	

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms
				Level
1	Data structures and Algorithms	Programming		L3
3				
3				
5				

-		

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-charge in the observation	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks				
1	Start computer					
2	Open the text editor					
3	Select new file.					
4	Write the program					
5	Save the program with .c extension.					
6	Compile the program F9					
7	Execute the program F10					

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
			Hours		Method	Method	Level
-	-	At the end of the experiment,	-	-	-	-	-
		the student should be able					

		to					
1	17CSL38.1	Choose the Data manipulation	6	Data	Demonst	Labs	L5
		functions for array and strings using		Manipulation	ration		
		memory allocation methods					
2	17CSL38.2	Demonstration of stack operations on	9	Stack	Demonst	Labs	L5
		the expression using stacks		Operations	ration		
3	17CSL38.3	Determine the queue features on the	3	Queue	Demonst	Labs	L5
		problem using queue methods		Features	ration		
4	17CSL38.4	Compare linked list classification	9	Linked List	Demonst	Labs	L5
		using linked list method		Characteristic	ration		
				s			
5	17CSL38.5	Decide the hierarchical organization	3	Hierarchical	Demonst	Labs	L5
		of data using binary search tree		Organization	ration		
		method					
6	17CSL38.6	Explain the traversal method on node	3	Traversal	Demonst	Labs	L5
		and edges using graph operation		Method	ration		
7	17CSL38.7	Importance of file organization on	3	File	Demonst	Labs	L5
		files and records using hash function.		Organization	ration		
-		Total	36	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Analyze the memory allocation method	CO1	L5
2	Code and debug the operations of stack	CO2	L5
3	Demonstrate the working of the data structure in queues	CO3	L5
4	Evaluate the operations of linked list	CO4	L5
5	Analyze hierarchical linear and non linear data-structures	CO5	L5
6	Implement the traversal methods	CO6	L5
7	Evaluate the searching & sorting method by organizing the file structures	CO7	L5

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Expt	pt Mapping Mapping		Mapping	Justification for each CO-PO pair	Lev
			Level		el
-	CO PO -			'Area': 'Competency' and 'Knowledge' for specified	-
				'Accomplishment'	
1	CO1	PO1		The knowledge of structure and abstract data type can be applied to solve	
				complex problems.	
2	CO2	PO2		These fundamental concepts of CS can be applied to solve complex	
				problems	
2	CO2	PO3		Efficient algorithms can be designed based on their time complexity.	
3	CO3	PO2		These fundamental concepts of CS can be applied to solve complex	
				problems	
4	CO4	PO4		Analysis of algorithms helps to select suitable algorithms and reach valid	

			conclusions.	
5	CO5	PO1	The knowledge of structure and abstract data type can be applied to solve	
			complex problems.	
6	CO6	PO5	Complexity analysis can be applied in research and other innovative areas.	
7	CO7	PO3	The knowledge about the various data structures can be applied to solve	
			complex engineering problems.	
8	CO8	PO4	This knowledge helps in suitable representations and thereby interpretation	
			of data can be done efficiently	
9	CO9	PO2	These fundamental concepts of CS can be applied to solve complex	
			problems	
10	CO1	PO5	Complexity analysis can be applied in research and other innovative areas.	
	0			
11	CO1	PO3	The knowledge about the various data structures can be applied to solve	
	1		complex engineering problems.	
12	CO1	PO5	Complexity analysis can be applied in research and other innovative areas.	
	2			

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outco	mes	Program Outcomes					-										
Expt.	CO.#	At the end of t	the	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		experiment student	t should	1	2	3	4	5	6	7	8	9	10	11	12	O 1	O 2	O3	el
		be able to																	
1	17CSL38.	Choose the Data ma	anipulation	2	-	-	-	-	-	-	-	-	-	-	-				L5
	1	functions for array ar	nd strings																
		using memory allocation	methods																
2	17CSL38.	Demonstration of stack of	operations	-	-	3	2	-	-	-	-	-	-	-	-				L5
	2	on the expression using	stacks																
3	17CSL38.	Determine the queue fe	eatures on	2	-	3	-	-	1	-	-	-	-	-	-				L5
	3	the problem using queue	e methods																
4	17CSL38.	Compare linked list cla	ssification	1	-	2	3	-	1	-	-	-	-	-	-				L5
	4	using linked list method																	
5	17CSL38.	Decide the h	ierarchical	1	2	2	1	-	-	-	-	-	-	-	-				L5
	5	organization of data us	ing binary																
		search tree method																	
6	17CSL38.	Explain the traversal m	nethod on	-	-	3	2	-	-	-	-	-	-	-	-				L5
	6	node and edges usi	ng graph																
		operation																	
7	17CSL38.	Importance of file organ	nization on	-	-	3	2	-	-	-	-	-	-	-	-				L5
	7	files and records us	ing hash																
		function.																	
-	17CSL38	Average attainmen	t (1, 2,	2	2	3	2												-
		or 3)																	
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions						ons;											
		4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer							neer										
		and Society; 7.Environ	ment and	Sı	ısta	inal	bility	/; 8	3.Et	hics	5; 9).Inc		lual	a	nd	Tea	mw	′ork;
		10.Communication; 11	.Project I n: S2 Dete	viar Rə	iagi	eme Man	ent	ar me	10 nt	FIL SZ	ian(Me	:е; ь п	12 Desir	LIT nn	e-ic	ng	LE	earn	iing;
		S1.Software Engineering; S2.Data Base Management; S3.web Design																	

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi		No	o. of qu	lestion	in Exa	am		CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Arrays	03	1	-	1	-	-	-	1	CO1	L5
2	Strings	03	1	-	1	-	-	-	1	CO1	L5
3	Stack	03	1	-	1	-	-	-	1	CO2	L5
4	Conversion Of Expressions	03	1	-	1	-	-	-	1	CO2	L5
5a	Evaluation Of Expressions	02	1	-	1	-	-	-	1	CO2	L5
5b	Tower of Hanoi	01	1	-	1	-	-	-	1	CO2	L5
6	Queues	03	1	-	1	-	-	-	1	CO3	L5
7	Singly Linked List	03	-	1	1	-	-	-	1	CO4	L5
8	Doubly Linked List	03	-	1	1	-	-	-	1	CO4	L5
9	Circular Linked List	03	-	1	1	-	-	-	1	CO4	L5
10	Binary Search Tree	03	-	1	1	-	-	-	1	CO5	L5
11	Depth First Search	03	-	1	1	-	-	-	1	CO6	L5
12	Hash Functions	03	-	1	1	-	-	-	1	C07	L5
-	Total	36	6	6	12	0	0	0	12	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	CO	Levels
CIA Exam – 1	08	CO1, CO2	L4
CIA Exam – 2	08	CO3, CO4	L4
CIA Exam – 3	08	CO5,CO6,CO7	L4
	-	-	-
Other Activities – define –	-	-	-

Slip test			
Final CIA Marks	20	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	04 Marks
2	Record Writing / Viva	08 Marks for each Expt
3	Internal Exam Assessment	08Marks
4	Internal Assessment	20 Marks
5	SEE	80Marks
-	Total	100 Marks

E. EXPERIMENTS

Experiment 01 : Arrays

-	Experiment No.:	1	Marks		Date Planned		Date Conducte d	
1	Title	Arrays	3					
2	Course Outcomes	Choos allocat	se the Datition metho	ta manipulati ds	on functions	for array a	nd strings u	sing memory
3	Aim	Exerci	se on mer	nory allocatio	n			
4	Material / Equipment Required	Lab M	anual					
5	Theory, Formula, Principle, Concept	Learn	data struc	ture classifica	ition for array	with the me	mory allocatio	on functions
6	Procedure, Program, Activity, Algorithm, Pseudo Code		step 1: s step 2: v step 3: s step 4: c step 5: if step 6: r	start write program save the prog compile f error then co un	iming iram prrect the erro	ors		
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	•	- - -					
8	Observation Table, Look-up Table, Output		SAMPLE Me 1.Create 2.Displa 3.Insert 4.Delete 5.Exit Enter yo 1 Enter the 10 20 30 40	E OUTPUT: enu y ur choice: e size of the a e elements fo	array element r the array:	s: 5		

		SAMPLE OUTPUT:
		Menu
		1.Create
		• 2.Display
		3.Insert
		• 4.Delete
		• 5.Exit
		Enter your choice: 1
		Enter the size of the array elements: 5
		Enter the elements for the array:
		10 20 30 40 50
9	Sample Calculations	- Creating an array
		 Displaying an array elements
		 Inserting an element in to an array
		- Deleting an array element
10	Graphs, Outputs	Enter the elements for the array:
		10 20 30 40 50
11	Results & Analysis	• -
		• -
12	Application Areas	Analyze the memory allocation method
13	Remarks	
14	Faculty Signature with	
	Date	

Experiment 02 : String

-	Experiment No.:	2	Marks		Date Planned		Date Conducte d	
1	Title	String	9	I	I	I	I	
2	Course Outcomes	Choc alloca	se the Data ation methods	manipulatic	n functions	for array an	id strings u	sing memory
3	Aim	Choc alloca	noose the String manipulation functions for array and strings using men ocation methods					
4	Material / Equipment Required	Lab N	Manual					
5	Theory, Formula, Principle, Concept	Learr	n data structu	re organizatio	on for strings	with the mem	ory allocatio	n functions
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step Step REP Step Step	1: Start. 2: Read mair 3: Search / fii 4: if PAT is fo string. 5: if PAT is no 6: Stop.	a string STR, nd the patterr bund then rep ot found give	pattern string a string PAT in lace all occur a suitable err	PAT and rep n the main str rrences of PA or message.	lace string R ing STR. \T in main st	EP.
7	Block, Circuit,							

	Model Diagram, Reaction Equation,	
	Expected Graph	
8	Observation Table,	Enter a main string
	Look-up Table,	This is Data Structure lab
	Output	Enter a pattern string
		Data Structure
		Enter a replace string
		Data structure with C
		The resultant string is
		This is Data structure with C lab
9	Sample	Enter a text String
	Calculations	enter pattern String
		Enter the replacing Sting
10	Graphs, Outputs	The resultant string is
		This is Data structure with C lab
11	Results & Analysis	
12	Application Areas	Analyze the memory allocation method
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 03 : Stack

-	Experiment No.:	3	Marks		Date Planned		Date Conducte	
							d	
1	Title	Stack	ζ					
2	Course Outcomes	Demo	onstration of s	stack operatio	ons on the exp	pression usin	g stacks	
3	Aim	Imple	mentation of	stack operati	ons			
4	Material /	Lab N	/lanual					
	Equipment							
	Required							
5	Theory, Formula,	Push	Operations					
	Principle, Concept	Pop (Operations					
		Displ	ay Operation	S				
6	Procedure,	Step	1: Start.					
	Program, Activity,	Step	2: Initialize st	ack size MAX	K and top of st	ack -1.		
	Algorithm, Pseudo	Step	3: Push integ	er element o	n to stack and	display the o	contents of the	e stack.
	Code	if stad	ck is full give	a message a	s 'Stack is Ov	erflow'.		
		Step	3: Pop eleme	ent from stack	along with di	splay the sta	ck contents.	
		if stad	ck is empty gi	ve a messag	e as 'Stack is	Underflow'.		
		Step	4: Check whe	ether the stac	k contents are	e Palindrome	or not.	
		Step	5: Stop.					

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table,	MAIN MENU
	Look-up Table,	1. PUSH (Insert) in the Stack
	Output	2. POP (Delete) from the Stack
		3. PALINDROME check using Stack
		4. Exit (End the Execution)
		Enter Your Choice: 1
		Enter an element to be pushed: 1
		The stack contents are:
		1
9	Sample	Pushing the elements
	Calculations	Poping the elements
		Checking the stack content form Palindrome
		Check overflow and underflow conditions
10	Graphs, Outputs	MAIN MENU
		1. PUSH (Insert) in the Stack
		2. POP (Delete) from the Stack
		3. PALINDROME check using Stack
		4. Exit (End the Execution)
		Enter Your Choice: 1
		Enter an element to be pushed: 1
		The stack contents are:
		1
11	Results & Analysis	
12	Application Areas	Code and debug the operations of stack
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 04 : Conversion Of Expression

-	Experiment No.:	4	Marks		Date Planned		Date Conducte d	
1	Title	Conv	ersion Of Exp	pression				
2	Course Outcomes	Demo	onstration of s	stack operation	ons on the exp	pression usin	g stacks	
3	Aim	Exerc	Exercise on Keywords and identifiers					
4	Material /	Lab N	/lanual					
	Equipment							
	Required							
5	Theory, Formula,	Ident	ify infix ,postfi	x,prefix Expre	essions			
	Principle, Concept							

6	Procedure,	Step 1: Start.
	Program, Activity,	Step 2: Read an infix expression with parenthesis and without parenthesis.
	Algorithm. Pseudo	Step 3: convert the infix expression to postfix expression.
	Code	Step 4: Stop
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Push Last In - First Out Pop Data Element Data Element
8	Observation Table,	Enter a valid infix expression
	Look-up Table,	(a+(b-c)*d)
	Output	The infix expression is:
		(a+(b-c)*d)
		The postfix expression is:
		abc-d*+
9	Sample	Precedence calculation
	Calculations	comparing input character with the stack top character
10	Graphs, Outputs	Enter a valid infix expression
		(a+(b-c)*d)
		The infix expression is:
		(a+(b-c)*d)
		The postfix expression is:
		abc-d*+
11	Results & Analysis	
12	Application Areas	Code and debug the operations of stack
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 05 a: Evaluation of expressions

-	Experiment No.:	5a	Marks		Date Planned		Date Conducte	
							d	
1	Title	Evalu	ation of expre	essions				
2	Course Outcomes	Demo	onstration of s	stack operatio	ns on the exp	pression usin	g stacks	
3	Aim	Evalu	ate the Suffix	Expression u	using stack op	perations		
4	Material /	Lab N	/lanual					
	Equipment							
	Required							
5	Theory, Formula,	Evalu	ate the suffix	Expression v	vith single dig	it operands a	and operators	+,-,*,/,%,^
	Principle, Concept							
6	Procedure,	Step	1: Start.					
	Program, Activity,	Step	2: Read the p	ostfix/suffix e	xpression.			
	Algorithm, Pseudo	Step	3: Evaluate th	ne postfix exp	ression base	d on the prec	edence of the	e operator.
	Code	Step	4: Stop.					
7	Block, Circuit,							
	Model Diagram,							

	Reaction Equation,	
	Expected Graph	
8	Observation Table,	Enter the postfix expression:
	Look-up Table,	23+
	Output	The result is: 5.000000
9	Sample	Computations of the operands with stack top elements with the operators
	Calculations	
10	Graphs, Outputs	Enter the postfix expression:
		23+
		The result is: 5.000000
11	Results & Analysis	
12	Application Areas	Demonstrate the working of the data structure in queues
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 05 b: Tower of Hanoi

-	Experiment No.:	5b Marks	Date Planned	Date Conducte d				
1	Title	Tower of Hanoi		· · ·				
2	Course Outcomes	Demonstration of	Demonstration of stack operations on the expression using stacks					
3	Aim	Moving the disk fr	rom first peg to third peg usir	ng auxilary peg				
4	Material / Equipment Required	Lab Manual						
5	Theory, Formula, Principle, Concept	Formula, Perform the tower of hanoi using recursion method Concept						
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step 1: Start. Step 2: Read N nu Step 3: Move all th Step 4: Stop.	ep 1: Start. ep 2: Read N number of discs. ep 3: Move all the discs from source to destination by using temp rod. en 4: Stop					
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
8	Observation Table, Look-up Table, Output	Enter the number 3 Move disc 1 from Move disc 2 from Move disc 1 from Move disc 3 from Move disc 1 from Move disc 2 from Move disc 1 from	r of discs: A to C A to B C to B A to C B to A B to C A to C					

		Total Number of moves are: 7"
9	Sample	2 ⁿ -1 where n I number of disk
	Calculations	
10	Graphs, Outputs	Enter the number of discs:
		3
		Move disc 1 from A to C
		Move disc 2 from A to B
		Move disc 1 from C to B
		Move disc 3 from A to C
		Move disc 1 from B to A
		Move disc 2 from B to C
		Move disc 1 from A to C
		Total Number of moves are: 7"
11	Results & Analysis	
12	Application Areas	Demonstrate the working of the Tower of Hanoi
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 06: Circular queues

-	Experiment No.:	6 Marks		Date Planned	Date Conducte
					d
1	litle	Circular queues			
2	Course Outcomes	Determine the que	ue features o	n the problem ι	sing queue methods
3	Aim	Circular Queue Im	plementation		
4	Material /	Lab Manual			
	Equipment				
	Required				
5	Theory, Formula,	Array Implementat	ion of Queue	with Maximum	size
	Principle, Concept				
6	Procedure,	Step 1: Start.			
	Program, Activity,	Step 2: Initialize qu	ieue size to N	/IAX.	
	Algorithm, Pseudo	Step 3: Insert the	elements into	o circular queue	. If queue is full give a message a
	Code	'queue is overflow'	,		
		Step 4: Delete a	n element fro	om the circula	queue. If queue is empty give
		message as 'queu	e is		
		underflow'.			
		Step 5: Display the	contents of	the queue.	
		Step 6: Stop.			

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	 1) Initially: Front = 0 and rear = -1 2) Add item 10 then front = 0 and rear = 0. 3) Now delete one item then front = 1 and rear = 1. 4) Like this now insert 30, 40, and 50, 50, 70, 80 respectability then front = 1 and rear = 7. 5) Now in case of linear queue, we can not access 0 block for insertion but in circular queue next item will be inserted of 0 block them front = 0.
8	Observation Table,	1. Insert 2. Delete 3. Display 4. Exit
	Look-up Table,	Enter the choice: 1
	Output	Enter the character / item to be inserted: A
		1. Insert 2. Delete 3. Display 4. Exit
		Enter the choice: 1
9	Sample	Insertion of elements
	Calculations	Deletion of element
10	Graphs, Outputs	1. Insert 2. Delete 3. Display 4. Exit
		Enter the choice: 1
		Enter the character / item to be inserted: A
		1. Insert 2. Delete 3. Display 4. Exit
		Enter the choice: 1
11	Results & Analysis	
12	Application Areas	Demonstrate the working of the data structure in queues
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 07: Singly Linked List

-	Experiment No.:	7	Marks		Date Planned		Date Conducte		
1	Title	Sinaly	Linked List				a		
2	Course Outcomes	Compa	are linked lis	t classificatio	n usina linked lis	st method			
3	Aim	Sinaly	linked list in	nolementatio	n				
4	Material /	Lab M	anual						
	Equipment								
	Required								
5	Theory. Formula.	Implen	nent Menu d	riven with stu	dent data				
	Principle, Concept								
6	Procedure,	Step 1	: Start.						
	Program, Activity,	Step 2	: Read the v	alue of N. (N	student's inform	nation)			
	Algorithm, Pseudo	Step 2	: Create a si	ngly linked lis	st. (SLL)				
	Code	Step 3	: Display the	status of SL	L.				
		Step 4	: Count the r	number of no	des.				
		Step 5	ep 5: Perform insertion at front of list.						
		Step 6	: Perform de	eletion at the	front of the list.				
		Step 7	: Perform ins	sertion at end	of the list.				
		Step 8	: Perform de	eletion at the	end of the list.				

		Step 9: Demonstrate how singly linked list can be used as stack.
		Step 10: Demonstrate how singly linked list can be used as queue.
		Step 11: Stop.
7	Block, Circuit,	data next data next data next
	Model Diagram,	3 10 2 so on
	Reaction Equation,	head
	Expected Graph	
8	Observation Table,	1. Create 2. Display 3. Insert 4. Delete 5. Stack 6.Queue 7. Exit
	Look-up Table,	Enter your choice: 1
	Output	How many student data you want to create: 2
		Enter USN, Name, Branch, Sem, Ph.No
		1kt12cs001 kumar cs 3 9900099000
		Enter USN, Name, Branch, Sem, Ph.No
		1kt12is002 ravi is 3 9900099111
9	Sample	Create
	Calculations	front insertion
		status informations
		deletion at end and front
10	Graphs, Outputs	1. Create 2. Display 3. Insert 4. Delete 5. Stack 6.Queue 7. Exit
		Enter your choice: 1
		How many student data you want to create: 2
		Enter USN, Name, Branch, Sem, Ph.No
		1kt12cs001 kumar cs 3 9900099000
		Enter USN, Name, Branch, Sem, Ph.No
		1kt12is002 ravi is 3 9900099111
11	Results & Analysis	
12	Application Areas	Evaluate the operations of linked list
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 08: Doubly Linked List

-	Experiment No.:	8	Marks		Date Planned		Date Conducte	
1	Title	Doub	ly Linked List				ч	
2	Course Outcomes	Comp	pare linked lis	t classificatio	n using linked	l list method		
3	Aim	Imple	mentation of	Doubly linked	l list			
4	A Material /Lab Manual							
	Equipment							
	Required							
5	Theory, Formula,	Menu	ı driven Emple	oyee data sto	rage			
	Principle, Concept							
6	Procedure,	Step	1: Start.					
	Program, Activity,	Step	2: Read the v	alue of N. (N	student's info	ormation)		
	Algorithm, Pseudo	Step	3: Create a d	oubly linked li	st. (DLL)			
	Code	Step	4: Display the	e status of DL	L.			

Experiment 09: Circular Linked List

-	Experiment No.:	9	Marks		Date Planned		Date Conducte	
1	Title	Circu	lar Linked Lis	it			a	
2	Course Outcomes	Com	oare linked lis	t classification	n using linked	l list method		
3	Aim	Evalu	valuation of polynomial expressions using Circular linked list					
4	Material /	/Lab Manual						
	Equipment							
	Required							
5	Theory, Formula,	Repro	esent and Eva	aluate polyno	mial expressi	on		
	Principle, Concept							
6	Procedure,	Step	1: Start.					
	Program, Activity,	Step	2: Read a pol	lynomial.				
	Algorithm, Pseudo	Step	3: Represent	the polynomi	al using singl	y circular link	ed list.	

	Code	Step 3: Evaluate the given polynomial Step 4: Read two polynomials and find the sum of the polynomials. Step 5: Stop					
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	1) Write in Standard form $(3y^5 + y^4 + 2y^3 - 2y + 5) + (2y^5 + 3y^3 + 7y + 2)$ 2) Arrange in columns of $3y^5 + y^4 + 2y^3 - 2y + 5$ like terms and then add $2y^5 + 3y^3 + 7y + 2$ $y^5 + 3y^3 + 7y + 2$ $y^5 + y^4 + 5y^3 + 5y + 7$					
8	Observation Table, Look-up Table, Output	 Evaluate polynomial P(x,y,z) = 6x2y2z-4yz5+3x3yz+2xy5z-2xyz3 Add two polynomials Exit Enter your choice: 1 Enter polynomial to evaluate: Enter coeff: 6 Enter x, y, z powers (0-indiacate NO term: 2 2 1 If you wish to continue press 1 otherwise 0: 1 Enter coeff: -4 					
9	Sample Calculations	P(x,y,z) = 6x2y2z-4yz5+3x3yz+2xy5z-2xyz3					
10	Graphs, Outputs	 Evaluate polynomial P(x,y,z) = 6x2y2z-4yz5+3x3yz+2xy5z-2xyz3 Add two polynomials Exit Enter your choice: 1 Enter polynomial to evaluate: Enter coeff: 6 Enter x, y, z powers (0-indiacate NO term: 2 2 1 If you wish to continue press 1 otherwise 0: 1 Enter coeff: -4 					
11	Results & Analysis						
12	Application Areas	Evaluate the operations of linked list					
13	Remarks						
14	Faculty Signature with Date						

Experiment 10: Binary Search Tree

-	Experiment No.:	10	Marks		Date Planned		Date Conducte	
							d	
1	Title	Binar	y Search Tre	е				
2	Course Outcomes	Decio	ecide the hierarchical organization of data using binary search tree method					
3	Aim	Imple	menting Tre	e operation us	sing Binary S	earch tree		
4	Material /	Manu	al					
	Equipment							
	Required							
5	Theory, Formula,	Trave	ers the Binary	tree in inorde	er,preorder ar	nd post order		
	Principle, Concept							
6	Procedure,	Step	1: Start.					

		Enter your choice:
		1
		' Enter N value: 12
		Enter the values to create BST like $(6.952.81524.147.852)$
		6
		0 0
		5
		8
		15
		24
		14
		7
		8
		5
		2
		1. Insertion in Binary Search Tree
		2. Delete Element in Binary Search Tree
		3. Inorder
		4. Preorder
		5. Postorder
		6. Exit
		Enter your choice: 3
11	Results & Analysis	
12	Application Areas	Analyze hierarchical linear and non linear data-structures
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 11: Breadth First Search

-	Experiment No.:	11 M a	arks		Date		Date	
					Planned		Conducte	
							d	
1	Title	Breadth F	irst Sear	ch				
2	Course Outcomes	Explain th	ne travers	sal method o	n node and e	dges using g	raph operatio	n
3	Aim	Traverse th	he graph	using breadt	h first search	methods		
4	Material /	Manual						
	Equipment							
	Required							
5	Theory, Formula,	A graph G	G = (V, I	E) where v=	{0, 1, 2, .		e represente	ed using two
	Principle, Concept	dimensiona	al intege	r array of size	enxn			
6	Procedure,	Step 1: Sta	art.					
	Program, Activity,	Step 2: Inp	out the va	alue of N nod	es of the grap	bh		
	Algorithm, Pseudo	Step 3: Cre	eate a gr	aph of N nod	es using adja	acency matrix	representati	on.
	Code	Step 3: Pri	int the no	des reachab	e from the st	arting node u	ising BFS.	
		Step 4: Ch	eck whe	ther graph is	connected or	r not using DI	FS.	
		Step 5: Sto	op.					

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	1. Create Graph 2.BFS Enter your choice: 1 3.Exit Enter the number of vertices of the digraph: 4 Enter the adjacency matrix of the graph: 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
		2
9	Sample Calculations	 Initially all vertices are unvisited. DFS starts in arbitrary vertex and runs as follows: Mark vertex u as visited. For each edge (u, v), where u is unvisited, run depth-first search for u recursively. Mark vertex u as DFS has finished processing the vertex. and backtrack to the parent.
10	Graphs, Outputs	 Create Graph BFS Enter your choice: 1 Exit Enter the number of vertices of the digraph: 4 Enter the adjacency matrix of the graph: 0

		0
		1
		0
		0
		0
		0
		0
		1
		0
		0
		1
		0
		0
		1. Create Graph
		2.BFS
		Enter your choice: 2
		3.Exit
		Enter the source vertex to find other nodes reachable or not: 1
		3
		4
		2
11	Results & Analysis	<u> </u>
12	Application Areas	Implement the traversal methods
	Application Areas	
13	Remarks	
14	Faculty Signature	
14	with Doto	
	with Date	

Experiment 12: Hashing Functions

-	Experiment No.:	12 Marks		Date		Date	
				Planned		Conducte	
						d	
1	Title	Hashing Functior	IS				
2	Course Outcomes	Importance of file	organization on	files and rec	cords using h	ash function	
3	Aim	Organizing the er	nployee records	in a hash ta	ble by setting	g Keys	
4	Material /	Lab Manual					
	Equipment						
	Required						
5	Theory, Formula,	,Hash Table is a	data structure	which store	data in asso	ociative man	ner. In hash
	Principle, Concept	table, data is sto	red in array for	mat where e	each data va	alues has its	own unique
		index value.					
6	Procedure,	Step 1: Start.					
	Program, Activity,	,Step 2: Given a	File of N emplo	oyee records	with a set l	K of Keys (4	-digit) which
	Algorithm, Pseudo	uniquely determi	ne				
	Code	the records in file	F.				
		Step 3: Assume	that file F is m	aintained in	memory by	a Hash Tab	ole(HT) of m
		memory locations	6				

		0 9 0 EmpName Anand
		Kumar
ç	Sample Calculations	$\begin{array}{c} (1,20) \ (2,70) \ (42,80) \ (4,25) \ (12,44) \ (14,32) \ (17,11) \ (13,78) \ (37,98) \\ \text{S.n. Key Hash} & \text{Array Index} \\ 1 & 1 & 1 \ \% \ 20 = 1 & 1 \\ 2 & 2 & 2 \ \% \ 20 = 2 & 2 \\ 3 & 42 & 42 \ \% \ 20 = 2 & 2 \end{array}$
1	O Graphs, Outputs	Enter the data: 2 Enter emp id: 100 Enter emp name: Anand Do you wish to continue? (1/0): Enter the data: 4 Enter emp id: 101 Enter emp name: Kumar Do you wish to continue? (1/0): 1 0 1.Display ALL 2.Filtered Display Enter the choice: 1 The hash table is: HTKey EmpID 0 2 100 3 0 4 4 101 5 0 6 0 7 0 8 0 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1

		Kumar
11	Results & Analysis	
12	Application Areas	Evaluate the searching & sorting method by organizing the file structures
13	Remarks	
14	Faculty Signature	
	with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

Table	1:	TLPA	_	Example	9	Course
IUNIC				EAGINPIC	-	000150

			-				
Expt-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment
#	(Split module content into 2 parts which have	Teachin	Learning	Bloo	Action	n	Methods to
	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
			for	Level	Learning	for	Learning
			Content			Learning	
A	В	С	D	E	F	G	Н
1	Write a C++ program to read series of	3	L2	L2	Summari	Demonst	Viva &
	names, one per line, from standard input and		(Underst	(Unu	ze	rale	presentation
	write these names spelled in reverse order to		anu)	nd)			
	the standard output using I/O redirection and			,			
	pipes. Repeat the exercISE using an input file						
	specified by the user instead of the standard						
	input and using an output file specified by the						
	user instead of the standard output.						
2	Write a C++ program to read and write	3	L3 (Apply)	L3	Develop	Demonst	VIVa &
	student objects with fixed length records and		(Appiy)	(Appi		Tale	presentation
	the fields delimited by " ". Implement pack (),			, , , , , , , , , , , , , , , , , , , 			
	unpack (), modify () and search () methods.		1.0			Demonst	
3	Write a C++ program to read and write	3	L3 (Apply)	L3	Develop	Demonst	VIVa &
	student objects with Variable - Length records		(~hhià)	V)		Tale	presentation
	using any suitable record structure.			, ,,			
	Implement pack (), unpack (), modify () and						
	search () methods.	0	1.4	1.4	Davialari	Domonet	Vivo P
4	write a C++ program to write student objects	3	L4 Analyze	L4 Analy	Develop	rate	nresentation
	with Variable - Length records using any		7 andry 20	ze		Tute	presentation
	Suitable record structure and to read from this						
	Mile a student record using KKN.	2	1.4	11	Davalar	Demonst	Viva &
5	write a C++ program to implement simple	3	Analyze	Analy	Develop	rate	nresentation
	abiests Implement add () search () delete (/	ze		. etto	p. 000
	objects. Implement add (), search (), delete (
6	y using the index. Write a C++ program to implement index on	2	13	13	Dovelop	Demonst	Viva &
0	secondary key the name for a file of student	3	Apply	Applv	Develop	rate	presentation
	secondary key, the name, for a file of student						
	using the secondary index						
7	Write a C++ program to read two lists of	2	13	13	Dovelor	Demonst	Viva &
1	while a C++ program to read two lists of	ാ		Apply	Develop	rate	presentation
	names and then match the names in the two		, , , , , , , , , , , , , , , , , , ,	ניקקי ן		1410	P. 00011001
·	· · · · · · · · · · · · · · · · · · ·				•		

	lists using Co Sequential Match based on a single loop. Output the names common to both the lists.						
8	Write a C++ program to read k Lists of names and merge them using k-way merge algorithm with k = 8.	3	L3 Apply	L3 Apply	Develop	Demonst rate	Viva & presentation
9	Mini Project	16	L6 (Create)	L6 (Crea te)	Design and create	Demonst rate	Viva & presentation

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Expt	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome
- #	Outcome	Concepts		(What all Learning	(1.Action Verb,	
	from study of	from		Happened from the	2.Knowledge,	
	the Content	Content		study of Content /	3.Condition /	Student Should
	or Syllabus			Syllabus. A short	Methodology,	be able to
				word for learning or	4.Benchmark)	
				outcome)		
Α	1	J	K	L	М	N
1	File	File	File	Will be able to	Action Verb :	Understanding the
	operations	operations	operations	understand the basic	Understanding	basic file operations
				file operations		using c/c++
					operations	
					condition : C/ C++	
2	Will know	Record	Record	Will be able to	Action Verb :	Analyze fixed and
	how to pack	Structure	Structure	understand buffer	Analyzing	variable length
	and unpack			management	Knowledge : Decord	records in the file
	the contents				structure	
	with record				Structure	
	and filed				condition : C/ C++	
	delimiter					
3	Will	Relative	Relative	Direct access	Action Verb :	Compare the time
	demonstrate	Record	Record		Evaluate	taken in index based
	how to	number	number		Knowledge : Direct	accessing by known
	access in				condition · C/ C++	INUEX NO
	short time					
4	Will	Primary	Primary and	Multiple views on a	Action Verb :	Comparing single
	demonstrate	and	secondary	single table	Evaluate	and multiple index
	single and	secondary	key		Knowledge :	based accessing of
	multiple	кеу				recoru
	views on a					
	file					
5	Will able to	Multiple	Multiple file	Parallel processing	Action Verb :	Analyzing the
	demonstrate	file	operations		Analyzing	operations on
	parallel	operations			Knowledge : Parallel	multiple files
	processing				condition · C/ C++	
	on files					
6	Will be able	Operation	Operations on	Mini Project	Action Verb :	Design and Develop
	design and	s on files	files with		Creating	the Project by menu

create a Mini with me Project based graphic based	nu menu based or or graphical al based		Knowledge : Files and its operations on design	based or graphical
--	--	--	--	--------------------